

SCIENCE AND TECHNOLOGY ORGANIZATION

APPLIED VEHICLE TECHNOLOGY PANEL

Science & Technology Organization Collaboration Support Office Applied Vehicle Technology Panel

AVT-393 Research Symposium on

Environmental and Thermal Barrier Coatings for Military Aircraft Engines

NRC Canada, Ottawa

15-17 May 2024

This Symposium is open to NATO Nations, Australia, Japan and Sweden

Theme and Topics

The RWS is organized as a medium-sized event with around 30-50 participants that aims to bring together subject matter experts on Thermal Barrier Coatings (TBC)s and Environmental Barrier Coatings (EBC)s to identify military needs, limitations, data sources and relevant development efforts within thermal and environmental barrier coatings for military aircraft applications. This Research Workshop is classified as NATO Unclassified - Releasable to AUS, SWE and JPN.

Topics covered include:

- Evaluations of terms and definitions
- Existing state of the art on barrier coatings
- Technology investment and development efforts
- Emerging technologies which are applicable throughout the engineering lifecycle
- Understanding Fluid-Structure-Interaction modelling of particle and aerosol laden turbomachinery flow
- Existing test and acceptance criteria

This AVT activity will be an interactive event comprising of the following 3 distinct work streams:

- Work stream 1: Capability: Understanding capability requirements and operational context of TBCs and EBCs. Work stream will also identify national capabilities and S&T knowledge gaps.
- Work stream 2: Coating material characteristics and application methods: Identify and understand coating material composition + properties and manufacturing processes related to TBCs and EBCs.
- Work stream 3: Testing methods, modelling and cost benefit analysis: Understand coating durability, testing, modelling and cost benefit assessment methods.

The NATO AVT-393 programme committee have identified you as prominent member of the Thermal and Environmental Barrier Coatings research community and wish to extend an invitation to this participate in this workshop dedicated to TBCs and EBCs.

Background

This proposed activity is the main output from ET-215 - Thermal and Environmental Barrier Coatings for Military Aircraft Engines which, evolved from findings and conclusions from Chapter 4 of AVT-250. AVT-250 concentrated on Environmental Particulate (EP) Foreign Object Damage (FOD) of aircraft gas turbine engines. The AVT-250 Technical Team's conclusions and recommendations have enabled enhanced engine design and test methodologies to mitigate the effects of EP-FOD, as well as more robust tools, models, and other products that establish best practices for flight in EP environments.

This proposal seeks to understand the problem space around the E/TBC materials and their damage and failures caused

AVT-393 Research Symposium on Environmental and Thermal Barrier Coatings for Military Aircraft Engines

by oxidation and hot corrosion. This two-year AVT activity culminates in a workshop to identify the current status of the research into E/TBCs and the current capability gaps. In addition, this activity will help establish NATO 'best practices' in E/TBCs processing, qualification and acceptance for combustor and turbine components in military aircraft engines. This proposal will be jointly administrated under the Applied Vehicles Technologies (AVT) Panel by the Power and Propulsion Systems (PPS) and Mechanical Systems, Structures and Materials (MSM) Technical Committees.

Registration

This event is by invitation only. If you would like an invitation, please contact the Panel co-chairs and panel secretary.

AVT Executive Office, Collaboration Support Office (CSO), Paris – Points of Contact:

Ms Erin BOLDI AVT Executive Officer Tel: +33 (0)1 55 61 22 93 Erin.Boldi@cso.nato.int

Mrs Isavela Kontolaimaki AVT Panel Executive Assistant Isavela.Kontolaimaki@cso.nato.int

> Ms Edna Ferraz AVT Panel Assistant Edna.Ferraz@cso.nato.int

Programme Committee

CO-CHAIRS

Anindya Ghoshal Army Research laboratory, USA Email: anindya.ghoshal.civ@army.mil

Dave Hallam Defence Science and Technology Laboratory, GBR Email: <u>dhallam@dstl.gov.uk</u>

PANEL MENTOR Prakash Patnaik

National Research Council, CAN Email: <u>Prakash.Patnaik@nrc-cnrc.gc.ca</u>

PANEL SECRETERY

Selvan Thamizhirai Defence Science and Technology Laboratory, GBR Email: <u>sthamizhirai1@dstl.gov.uk</u>

> TECHNICAL EVALUATOR Jeff Bird Canada Email: jeffbird@rogers.com

Workstream 1 (Capability) Team

United States Muthuvel Murugan Army Research Laboratory muthuvel.murugan.civ@army.mil

France Jonathan Cormier École Nationale Supérieure de Mécanique et d'Aérotechnique jonathan.cormier@ensma.fr United States Anindya Ghoshal Army Research Laboratory anindya.ghoshal.civ@army.mil

Italy Mario de Stefano Fumo Centro Italiano Ricerche Aerospaziali <u>m.destefano@cira.it</u>

Poland Radosław Swadźba Institute of Ferrous Metallurgy, Łukasiewicz <u>radoslaw.swadzba@git.lukasiewicz.gov.pl</u> // <u>rswadzba@imz.pl</u>

Workstream 2 (Characterisation and application)

Germany Uwe Schulz Deutsches Zentrum für Luft- und Raumfahrt Uwe.Schulz@dlr.de Poland Marek Goral Politechnika Rzeszowska mgoral@prz.edu.pl

Spain Pauline Audigie Instituto Nacional de Tecnica Aeroespacial <u>audigiep@inta.es</u> United States Ryan McGowan Army Research Laboratory ryan.c.mcgowan3.civ@army.mil

Workstream 3 (Modelling and costing)

Canada Kuiying Chen National Research Council Kuiying.Chen@nrc-cnrc.gc.ca

France Vincent Maurel Mines Paris Tech <u>vincent.maurel@mines-paristech.fr</u> Canada Vladimir Pankov National Research Council <u>Vladimir.Pankov@nrc-cnrc.gc.ca</u>

Italy Mario de Stefano Fumo Centro Italiano Ricerche Aerospaziali <u>m.destefano@cira.it</u> United Kingdom Neil Martin Defence Science and Technology Laboratory <u>npmartin@dstl.gov.uk</u>

United States David Shifler Office of Naval Research, US Navy david.a.shifler.civ@us.navy.mil

Programme

DAY 1

Wednesday, 15 May 2024, 1000-1730				
1000		NRC Aerospace Lab Tour		
1200		LUNCH		
1400		AVT-393 Opening Remarks AVT-393 Co-chairs: A Ghoshal, ARL, USA D Hallam, Dstl, GBR		
Session 1	Use	of TBC / EBC in a military context		
1410	KN	KEYNOTE Introduction to E/TBC, history and next steps/ challenges TBD		
1440	0	Opportunity for a show and tell session for those interested to present 1 slide to highlight recent research activity All attendees		
Session 2	Сара	bility of E/TBC		
1520	1	Introduction and objective of WS1 M Murughan, ARL, USA		
1530	2	Development of EBC in GE Aviation J Wan, GE Aviation, USA		
1550		COFFEE BREAK		
1610	3	Brief history of TBC from commissioning perceptive D Shifler, ONR, USA		
1630	4	EBC development in ORNL-USA M Ridley, ORNL, USA		
1700		Open discussion		
1730		Adjourn for the day		

DAY 2

Thursday, 16 May 2024, 0900-1730					
Session 3	Manu	facture and characterization of E/TBCs			
0900	5	Introduction and objective of WS2 – Manufacture of E/TBCs U Schulz, DLR, DEU			
0910	6	Thermal Spray TBD			
0930	7	Chemistries of E/TBCs and interaction between coating and deposits TBD			
0950	8	Thermal spray R Vassen, Fz, Juelich, DEU			
1010	9	Electron-beam physical vapor deposition (EP-PVD) Processing/testing D Wolfe, Penn State, USA			
1030		Open Discussion			
1050		COFFEE BREAK			
1110	10	Hot corrosion of TBC TBD			
1130	11	Fabrication of new EBCs TBD			
1150		Open Discussion			
1230		LUNCH			
Session 4	Dura	bility, testing and modelling			
1330	12	Intro and objective for WS3 – Durability, testing and modelling K Chen, NRC, CAN			
1340	13	History of modelling and simulation of E/TBC. R Clarkson, RR, GBR			
1410	14	High temperature coatings from Pratt and Whitney D Litton, P&W, USA			
1430	15	Modelling damage in TBCs V Maurel, Mines Paris, FRA			

1450	16	Measurement	and	failure	analysis	of	temporary	TBCs /	fast	sintering	of
		coatings									
		TBD									

- 1510 Open Discussion
- 1530 COFFEE BREAK

Session 5 Lab tours of NRC Canada

- 1600 Interactive session All
- 1630 Lab Tours
- 1730 Adjourn for the day

DAY 3

Friday, 17 May 2024, 0900-1400

Session 6 Costing of E/TBCs

0900	17	Introduction and objective of Costing for E/TBCs N Martin, Dstl, GBR
0910	18	Current (non-commercial) costing method and to give an indicative baseline costing of E/TBC N Martin, Dstl, GBR
1010	19	Repair technologies utilized in RR – Defence Aerospace A Richardson, RR, GBR
1030		Interactive session
1050		COFFEE BREAK
Session 7	Final	

- 1120 Interactive session
- 1200 TE Technical Evaluator Comments J Bird, NRC, CAN
- 1230 Research workshop adjourns

Science and Technology Organization in NATO

In NATO, Science & Technology (S&T) is defined as the selective and rigorous generation and application of state-ofthe-art, validated knowledge for defence and security purposes. S&T activities embrace scientific research, technology development, transition, application and field-testing, experimentation and a range of related scientific activities that include systems engineering, operational research and analysis, synthesis, integration and validation of knowledge derived through the scientific method.

In NATO, S&T is addressed using different business models:

- The Collaborative business model where NATO provides a forum where NATO Nations and partner Nations elect to use their national resources to define, conduct and promote cooperative research and information exchange.
- The In-House delivery business model where S&T activities are conducted in a NATO dedicated executive body, having its own personnel, capabilities and infrastructure.

The Science and Technology Organization - STO

The mission of the NATO STO is to help position the Nations' and NATO's S&T investments as a strategic enabler of the knowledge and technology advantage for the defence and security posture of NATO Nations and partner Nations, by:

- Conducting and promoting S&T activities that augment and leverage the capabilities and programmes of the Alliance, of the NATO Nations and the partner Nations, in support of NATO's objectives;
- Contributing to NATO's ability to enable and influence security and defence-related capability development and threat mitigation in NATO Nations and partner Nations, in accordance with NATO policies;
- Supporting decision-making in the NATO Nations and NATO.

AVT-393 Research Symposium

Acknowledgement

The Applied Vehicle Technology Panel expresses its thanks to Canada for the invitation to hold this meeting in Ottawa and for the facilities and personnel, which make this meeting possible.